Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38140539

RESUMEN

Due to globalisation and climate change, mosquito-borne pathogens are emerging in new areas on all continents, including Europe, which has recently faced outbreaks of dengue, chikungunya and West Nile fever. The present study complements previous investigations to evaluate the circulation of mosquito-borne viruses in Germany, with the aim of identifying potential vector species and risk areas. Mosquitoes collected from 2019 to 2021 and identified to species or species group level were screened for viruses of the families Flaviviridae, Peribunyaviridae and the genus Alphavirus of the family Togaviridae. In total, 22,528 mosquitoes were examined, thus providing the most comprehensive study on West Nile virus (WNV) circulation so far in the German mosquito population. Usutu virus (USUV) RNA was detected in six samples, Sindbis virus (SINV) RNA in 21 samples and WNV RNA in 11 samples. Samples containing RNA of USUV and WNV consisted of mosquitoes collected in the East German federal states of Brandenburg, Saxony and Saxony-Anhalt, while samples with RNA of SINV originated from more widespread locations. Although minimum infection rates have remained relatively low, the intensity of virus circulation appears to be increasing compared to previous studies. Continuous mosquito screening contributes to the early detection of the introduction and spread of mosquito-borne pathogens.


Asunto(s)
Culex , Culicidae , Flavivirus , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Humanos , Animales , ARN Viral/genética , Mosquitos Vectores , Flavivirus/genética , Virus del Nilo Occidental/genética , Alemania/epidemiología
2.
Virol J ; 20(1): 234, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833787

RESUMEN

The mosquito-borne flaviviruses West Nile virus (WNV) and Usutu virus (USUV) pose a significant threat to the health of humans and animals. Both viruses co-circulate in numerous European countries including Germany. Due to their overlapping host and vector ranges, there is a high risk of co-infections. However, it is largely unknown if WNV and USUV interact and how this might influence their epidemiology. Therefore, in-vitro infection experiments in mammalian (Vero B4), goose (GN-R) and mosquito cell lines (C6/36, CT) were performed to investigate potential effects of co-infections in vectors and vertebrate hosts. The growth kinetics of German and other European WNV and USUV strains were determined and compared. Subsequently, simultaneous co-infections were performed with selected WNV and USUV strains. The results show that the growth of USUV was suppressed by WNV in all cell lines. This effect was independent of the virus lineage but depended on the set WNV titre. The replication of WNV also decreased in co-infection scenarios on vertebrate cells. Overall, co-infections might lead to a decreased growth of USUV in mosquitoes and of both viruses in vertebrate hosts. These interactions can strongly affect the epidemiology of USUV and WNV in areas where they co-circulate.


Asunto(s)
Coinfección , Culicidae , Infecciones por Flavivirus , Flavivirus , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Coinfección/veterinaria , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/veterinaria , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/veterinaria , Aves , Mosquitos Vectores , Mamíferos
3.
Trop Med Infect Dis ; 8(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37624347

RESUMEN

The increasing threat of arboviruses such as West Nile virus (WNV) and Usutu virus (USUV) requires the fast and efficient surveillance of these viruses. The examination of mosquitoes takes up an important part; however, these investigations are usually very time-consuming. An alternative sample type for arbovirus surveillance might be mosquito excreta. In order to determine the excretion dynamics under laboratory conditions, laboratory colonies of Aedes vexans and Culex pipiens biotype molestus were infected with WNV, USUV or tick-borne encephalitis virus (TBEV). After infection, the excreta were sampled and investigated for viral RNA. Excretion of viral RNA together with infectious blood meal could be detected up to five days after infection. Further excretion seemed to correlate with a disseminated infection in mosquitoes, at least after USUV infection. In addition, it could be determined that the amount of viral RNA in the excretions correlated positively with the viral load in the mosquito bodies. Overall, this study shows that the usage of mosquito excreta as a sample type for surveillance enables the detection of endemic viruses (WNV, USUV) as well as non-mosquito-borne viruses (TBEV). In addition, examination of viral shedding during vector competence studies can provide insights into the course of infection without sacrificing animals.

4.
PLoS Pathog ; 19(1): e1011049, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603036

RESUMEN

The arenavirus nucleoprotein (NP) plays an important role in the virus' ability to block interferon (IFN) production, and its exonuclease function appears to contribute to this activity. However, efforts to analyze this contribution are complicated by the functional overlap between the exonuclease active site and a neighboring region involved in IKKε-binding and subsequent inhibition of IRF3 activation, which also plays an important role in IFN production. To circumvent this issue, we mutated a residue located away from the active site that is involved in binding of the dsRNA substrate being targeted for exonuclease digestion, i.e. H426A. We found that expression of Tacaribe virus (TCRV) NP containing this RNA-binding H426A mutation was still able to efficiently block IFN-ß promoter activity in response to Sendai virus infection, despite being strongly impaired in its exonuclease activity. This was in contrast to a conventional exonuclease active site mutant (E388A), which was impaired with respect to both exonuclease activity and IFN antagonism. Importantly, growth of a recombinant virus encoding the RNA-binding mutation (rTCRV-H426A) was similar to wild-type in IFN-deficient cells, unlike the active site mutant (rTCRV-E388A), which was already markedly impaired in these cells. Further, in IFN-competent cells, the TCRV-H426A RNA-binding mutant showed more robust growth and delayed IFN-ß mRNA upregulation compared to the TCRV-E388A active site mutant. Taken together, this novel mutational approach, which allows us to now dissect the different contributions of the NP exonuclease activity and IKKε-binding/IRF3 inhibition to IFN antagonism, clearly suggests that conventional exonuclease mutants targeting the active site overestimate the contribution of the exonuclease function, and that rather other IFN antagonistic functions of NP play the dominant role in IFN-antagonism.


Asunto(s)
Arenavirus , Arenavirus/genética , Interferones , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Quinasa I-kappa B , Exonucleasas/genética , ARN
5.
Viruses ; 14(12)2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36560791

RESUMEN

West Nile virus (WNV) is a zoonotic flavivirus transmitted by mosquitoes as a biological vector. Because of its biting behavior, the widespread snow-melt mosquito Aedes punctor could be a potential bridge vector for WNV to humans and nonhuman mammals. However, little is known on its role in transmission of WNV. The aim of this study was to determine the vector competence of German Ae. punctor for WNV lineages 1 and 2. Field-collected larvae and pupae were reared to adults and offered infectious blood containing either an Italian WNV lineage 1 or a German WNV lineage 2 strain via cotton stick feeding. Engorged females were incubated for 14/15 or 21 days at 18 °C. After incubation; surviving mosquitoes were dissected and forced to salivate. Mosquito bodies with abdomens, thoraces and heads, legs plus wings and saliva samples were investigated for WNV RNA by RT-qPCR. Altogether, 2/70 (2.86%) and 5/85 (5.88%) mosquito bodies were found infected with WNV lineage 1 or 2, respectively. In two mosquitoes, viral RNA was also detected in legs and wings. No saliva sample contained viral RNA. Based on these results, we conclude that Ae. punctor does not play an important role in WNV transmission in Germany.


Asunto(s)
Aedes , Culex , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Femenino , Virus del Nilo Occidental/genética , Mosquitos Vectores , ARN Viral , Mamíferos
6.
Cell Microbiol ; 15(7): 1234-52, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23351194

RESUMEN

CD81 is a major receptor for Hepatitis C Virus (HCV). It belongs to the tetraspanin family whose members form dynamic clusters with numerous partner proteins and with one another, forming tetraspanin-enriched areas in the plasma membrane. In our study, we combined single-molecule microscopy and biochemistry experiments to investigate the clustering and membrane behaviour of CD81 in the context of cells expressing EWI-2wint, a natural inhibitor of HCV entry. Interestingly, we found that EWI-2wint reduces the global diffusion of CD81 molecules due to a decrease of the diffusion rate of mobile CD81 molecules and an increase in the proportion of confined molecules. Indeed, we demonstrated that EWI-2wint promotes CD81 clustering and confinement in CD81-enriched areas. In addition, we showed that EWI-2wint influences the colocalization of CD81 with Claudin-1 - a co-receptor required for HCV entry. Together, our results indicate that a change in membrane partitioning of CD81 occurs in the presence of EWI-2wint. This study gives new insights on the mechanism by which HCV enters into its target cells, namely by exploiting the dynamic properties of CD81.


Asunto(s)
Antígenos CD/metabolismo , Hepacivirus/fisiología , Interacciones Huésped-Patógeno , Proteínas de la Membrana/metabolismo , Receptores Virales/metabolismo , Tetraspanina 28/metabolismo , Internalización del Virus , Línea Celular , Hepatocitos/virología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...